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Abstract. In this paper we study random non-adaptive algorithms for finding the maximum of a 
continuous function on the unit interval. We compare the average performance of different algo- 
rithms under the assumption of Wiener measure on the space of continuous functions. Placing the 
observations independently according to a Beta(2/3,2/3) density function is shown to be the optimal 
random non-adaptive algorithm. The performance is compared with other random and deterministic 
non-adaptive algorithms. 
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1. I n t r o d u c t i o n  

In this paper we study non-adaptive algorithms for global optimization of  contin- 
uous functions defined on the unit interval. These algorithms (also called passive 
algorithms) make no use of  previously observed function values in choosing the 

next observation site. We confine our attention to the sub-class of  such algo- 
rithms that results f rom choosing each observation site independently according 
to a fixed probabili ty distribution. We call such algorithms random non-adaptive 
algorithms. 

Our primary purpose 'is to describe the random non-adaptive algorithm that 
is optimal in an average sense. Our criterion for optimality is the expected dif- 
ference between the global maximum and the maximum observed value after n 
observations. The expectation is taken with respect to the Wiener measure on the 
continuous functions; i.e., we view the function to be optimized as a sample path 
of  a standard Brownian motion. There are two main reasons for our choice of  
Brownian motion as a model  for the objective function. First, Brownian motion 
arises frequently as a model  in diverse fields and many tools are available for its 
analysis. Brownian motion is one of  only a few non-trivial stochastic processes 
for  which the distribution of  the maximum is even known. In our investigation of  
optimization algorithms, the assumption of  Brownian motion allows us to carry 
out the calculations needed to obtain sharp results. The other reason for assuming 
Brownian mot ion (no doubt a partial consequence of  the first) is that Brownian 
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motion has motivated the construction of many global optimization algorithms; an 
early example is given by Kushner (1964), and other examples are described by 
TOrn and Zilinskas (1989). The average performance of some deterministic non- 
adaptive algorithms under the Wiener measure has been studied (see Ritter 1990 
and Calvin 1994). While our primary goal is to determine the optimal non-adaptive 
random algorithm, we are also motivated by a desire to understand the performance 
differences between random and deterministic algorithms. 

We use the average performance criterion because the class of objective func- 
tions (continuous functions on the unit interval) is too general to permit an interest- 
ing worst-case analysis. The average performance of non-adaptive algorithms is of 
interest because they are the easiest algorithms to implement and their performance 
gives a lower bound on performance to be expected from adaptive algorithms. 

The next section introduces the problem and the notation. Section 3 describes 
the optimal random algorithm, and Section 4 contains concluding remarks. 

2 .  N o t a t i o n  

Given a continuous real-valued function f defined on the unit interval, let t* 
be a global maximizer and let f* = f(t*) = max{f(t);t  C [0, 1]} denote its 
global maximum. Throughout this paper we will assume that we are allowed to 
make n observations of a function f to approximate its global maximum f i -  
Let t~, t 2 , . . . ,  t,, be the observation sites in [0, 1]. Denote the maximum of the n 
observed values by 

M~ = M~(f)  = m a x  f( t i) ,  
l < i < n  

and let t~ be a site where the function takes the value Mn. Our goal is to choose 
the sites in such a way that Mn is a good approximation to f t .  

In this paper we limit consideration to the class of random non-adaptive algo- 
rithms that locate the observation sites independently according to a fixed proba- 
bility density function. Thus we identify algorithms with probability densities on 
the unit interval. For algorithm ~4 (i.e., probability density A), the approximation 
error random variable after n observations is defined by 

/x~ = A ~ ( f ) =  f * -  M~. 

Since we are interested in average performance, we compare different algorithms 
based on the expectation of the error random variable; i.e., we put a probability ~t 
on some class of functions f .  Equivalently, we view the objective function f C f 
as a sample path of a stochastic process and compare the average performance of 
different algorithms by comparing their average errors, EA~,  where 

E(AA~) = ffe~r(f* - Mn(f))d#(f) .  
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The Wiener measure will be taken as the probability distribution on 5 v = 
C([0, 1]). For any t ¢ [0, 1], f ( t )  has a normal distribution with mean 0 and 
variance t, and for any 

0 ~ tO < tl <_ . . .  ~_ tk ~ 1, 

the random variables f ( t l )  - f ( to) ,  f(t2) - f ( t l ) , . . . ,  f ( t k )  - f ( t k - l )  are inde- 
pendent, with f ( t i )  - f ( t i - l )  normally distributed with mean 0 and variance 
ti -- t i -  I. 

3. Optimal Random Algorithm 

If the observations are chosen independently according to a distribution that is 
supported by the unit interval, then x /~E(An)  will converge to some constant 
that depends on the distribution. In this section we will find the distribution that 
minimizes the limiting constant; we call this the asymptotically optimal random 
non-adaptive algorithm. We use the qualifier "asymptotically" since the algorithm 
need not be optimal for a fixed finite number of observations. 

The simplest random non-adaptive algorithm allocates the observations inde- 
pendently and uniformly on the unit interval. Calvin (1994) showed that for the 
uniform density, 

(2n)l/2 + O(1 /n ) .  (1) 

The deterministic analog of this algorithm is the uniform grid algorithm where the 
observations are placed at equally spaced locations over the unit interval. Ritter 
(1990) showed that this method is optimal among non-adaptive algorithms for 
n : 2, but it is not optimal in general. (For n = 3, he showed that the optimal 
sites are approximately t 1 : 0.3, t 2 : 0.7 and t3 = 1.) The non-optimality of 
the deterministic uniform grid algorithm suggests that a random algorithm can do 
better than to choose the sites uniformly distributed. The arcsine density, given 
by 

1 
h ( t ) -  : r ~ '  0 < t <  1, (2) 

is a natural candidate for the optimal density since it is the density of the maximizer 
of a Brownian motion path. This density does give a better convergence rate than the 
uniform density, although we will show in this section that even faster convergence 
can be attained. 

The key tools used to find the optimal random algorithm are furnished by 
Lemmas 3.2 and 3.3 below, which show that the limiting distribution of the suitably 
normalized error random variable over the unit interval given that the maximum is 
in subinterval T is the same as the limiting distribution of the normalized error over 
T. It follows that in the limit, the properly normalized expected error conditioning 



84 HISHAM AL-MHARMAH AND JAMES M. CALVIN 

on the global maximum being in T  depends only on the observation density within 
T. 

The results in this section make use of properties of Brownian meander and the 
three-dimensional Bessel process. Roughly speaking, a Brownian meander on the 
interval [0, T ]  is a Brownian motion "conditioned to be positive on (0, TI", while 
the three-dimensional Bessel process can be thought of as a Brownian motion 
"conditioned to be positive on (0 ,  a)". Precise descriptions and properties are 
given in Imhoff (1984) and Revuz and Yor (1991). 

Let { Y  ( t )  : t 2 0) be a 3-dimensional Bessel process, and define an independent 
Poisson process with intensity 1 and points of increase {TI  : T2, T3,  . . .). Set 

Z = minY(T;) .  
22 I 

(3) 

The random variable Z will play an important role in the following lemmas. First 
we derive its distribution. 

LEMMA 3.1. For Z defined by (3), 

for y 2 0. 

Prooj Let L, = sup{t : Y(t)  = y).  Since Y is transient, Ly < (x a s .  The 
process X ( t )  = Y ( L y  - t ) ,  0 5 t 5 L, has the same law as { B ( t )  : 0 5 f < To),  
where B is a Brownian motion starting at y and run until it hits zero; see Revuz and 
Yor (1991). The problem is therefore reduced to that of determining the law of the 
minimum of a Markov chain W, that has the transition law of Brownian motion, 
sampled at exponentially distributed intervals and killed on hitting 0. Specifically, 
let r be the transition function of W. Then 

&exp(-fiz)sinh(&y) 0 < y < 2, 
fi exp ( -&y)  sinh ( a z )  y > z > 0. 

Let V(Y) = P ( Z  5 y ) ,  y > 0, and let T N E x p (  1). Then 

and so 

which completes the proof. 4 
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L E M M A  3.2. Let { X ( t )  : 0 < t < v} be a Brownian meander on [0, v], and let 
{tl ,  t2, ." -} be independent and uniformly distributed over [0, a], where 0 < ~ < 7-. 
Let U~ = minl<i<~ X( t i )  and V = min~<~<~- X(~).  Then 

( n ) l / 2 m i n { U , ~ ,  V} ~ Z a s h - +  oc, (7) 

where Z is defined by (3) and ~ denotes convergence in distribution. 

The random variables U~ and V are depicted in Figure 1. 

Proof Let {ri • i _> 1} be the points of  increase of a Poisson process with 
intensity 1, independent of X .  Then, since {r i / r~+l  " i = 1 , . . . , n }  has the 
same joint distribution as the order statistics of n points chosen independently and 
uniformly over the unit interval, U~ has the same distribution as U~ defined by 

U~ = m i n { X  ( r i a l T o + l ) , X  (TzCr/Tn+I) , . . . , X  (rn(y/7-n+t) }. ( 8 )  

For each n >_ 1, set 

o < t < 
Y~(t)  (9) 

i n  t > 

The processes Y~ converge in distribution to the Bessel process IF as n - -  oc, and 
rewriting (8) in terms of the Y~'s shows that U~ has the same distribution as 

([~ = ( L ~ - ) - ' / 2 m i n { Y ~ ( v , ) , Y ~ ( 7 - 2 )  . . . .  ,Y~(r~)} .  (10) 

Now (n/T~+~) 1/2 ~ 1, x / ~ V  ~ oo with probability one, and because Y'~ 

( n )  1/2 ( ~ ) 1 / 2  ( T _ ~ I )  1/2 min{Y~(Vl ), y~(7-2), . . . , y~(7-~)} 

= ( - ~ + I ) 1 / 2 m i n { Y ~ ( T ' I ) , Y ~ ( v 2 ) , . . . , Y ~ ( T ~ ) } , Z  (11) 

as n--+ oc. Therefore, (n/c~)l/2min{U~, V}  ~ Z, as was to be shown. 4 

L E M M A  3.3. Suppose that the observations sites are chosen independently accord- 
ing to the density 9, where 9 is a simple function of the form 

7)% 

g(t) = Z ci l{si_l<t<_si}, 0 < t < 1, ci >_ O, (12) 
i=1 

a n d 0 =  .so < Sl < 82 < " ' "  < 8 m  = 1. Then for each i = 1 , 2 , . . . , m ,  

v/-nE(A~lsi_l < t* < .si) -+ (2ci) -1/2 (13) 

a s  n --+ o o .  
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Fig. 1. Brownian meander process. 

Proof. Define a mapping H : C([O, 1]) --+ C ( [ - 1 ,  1])by 

{ f(¢*)-f(~*(l+t)) --1 < t < O, 
H f ( t )  = vaz 

f(t*)-f(t*+(1-t*)~) 0 < ~ < 1, 

where 

(14) 

t* = inf{t : f (s)  < f( t )  Vs E [0, 1]}. (15) 

If t* E {0, 1}, then set H f  = 0. Note that t* has a continuous distribution, 
and so the probability that it is equal to one of the .si's is zero. Since we are 
interested in the expected error, we can (and do) ignore the possibility of the event 
t* E {sl : 1 < i < n} in the remainder of the proof. 

If f is a Brownian motion, then H f  is equal in distribution to a "two-sided" 
Brownian meander (this transformation and result are described in Denisov 1984); 
that is, the sections of the trajectory of a suitably normalized Brownian motion 
to either side of the global maximizer are independent Brownian meanders. Intu- 
itively, Brownian meander is Brownian motion conditioned to stay above 0, so the 
difference between the global maximum and the Brownian motion before and after 
the global maximum are independent Brownian meanders. The transformation H 
normalizes the two meanders so that they are both over a unit interval. 

Let i be such that si-i < t* < s~, and let k + and k~ represent the number of 
the first n observations that are contained in the interval ( s i - l ,  si) and are below 
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t* and above t*, respectively: 

k n = #{tj,  1 <_ j <_ n " si-~ < tj < t*}, 

k + = #{tj,  1 < _ j < n ' t *  < t j  < s i } .  

87 

(16) 

(17) 

Let A, 2 be the minimum value of the Brownian meander on [ -  1,0] at the points 
{(tk - t*)/t* : tk <_ t ~} (the image of the observation sites to the left of t * under 
the transformation (14)), and similarly let A + be the minimum of the Brownian 
meander on [0, 1] at the points {(tk - t*)/(1 - t*) : t~ _> t*}. Then 

A n =  min ( v ~ A ~ ,  v/1 - t* A+)  • (18) 

Therefore, 

V/~A ~ m i n ( ( n ( t * - s i _ l ) k g t *  )1/2 
= (19) 

-~n t* -- 8 i -  1 

A +  . ( 2 0 )  
\ k + 

By the strong law of large numbers, 

lim n(t* - 8i- l )  _ lim n(si - t*) = c~- 1 (21) 

with probability one, and by Lemma 3.2, each of the terms 

( ~ ; t * ) 1 / 2  ( ] ¢ + n ( l _ [ _ f , ) ~ l / 2  
- - - -  A ~ ,  A + (22)  

t* -- 8 i - I  \ 8i -- t* i] 

converge in distribution to independent copies of the random variable Z described 
in (3). The expected minimum of two independent copies of Z is 1 /v~,  and the 
conclusion of the lemma follows. 

We are now ready for the main result which gives the optimal random non-adaptive 
algorithm under the Brownian motion assumption. 

THEOREM 3.1. The asymptotically optimal random algorithm for Brownian 
motion is given by the Beta distribution Beta(2/3,  2/3);  i.e., the points are chosen 
independently according to the density g( t ) given by 

g(t) = ]3(2/3,2/3)-1[t(1 - t)] -1/3, 0 < t < 1, (23) 

where ]33 is the beta function, 

] 3 ( x , y )  = tx - l (1  -- t)Y-ldt.  (24) 
0 
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fit) 

Fig. 2. 

Arc_sine - -  
B e t a  

Comparison between arcsine and beta(2/3,2/3) densities. 

Proof. Fix an integer m and suppose that the observation sites are chosen 
independently according to the simple density 9, given by 

m 

g(t) = E Ci l{s~_l<t<sl}, 0 < ~ < 1, 
i=1 

where 0 = so < sa < s2 < .- • < s m  = 1. By Lemma 3.3, 

m 

v~E(A,~) = ~ v/-~E(Anlsi_l < t* < s i )P(s i -1  < t* < si) 
i=l 

1 m 
"-+ - '~  E c•1/2p(8i-1 < t* < 8i). 

i=1 

Minimizing the above expression subject to the constraint that 

m 

E Ci(8i -- 8i-1) = 1 
i=1 

(that is, that g is a density), gives the optimal values as 

(P(si--1 < t* < si)) 2/3 

The optimality of  these ci's follows from the Karush-Kuhn-Tucker  conditions. 
Taking the limit as maxi Isi - s i - l l  --" 0 results in the optimal density 

g(t) ~ h(t) 2/3, 
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where h is the arcsine density. Therefore, 

g(t)  = B(Z/3 ,2 /3 ) - l [ t (1  - t ) ] - l / 3  0 < ~ < 1. 

H 
Having a beta other than arcsine as the optimal random algorithm contradicts the 
intuition that the best average performance would result from choosing observation 
sites according to the distribution of the maximizer. Figure 2 compares the arcsine 
and beta(2/3,2/3) densities, showing that the optimal distribution is "flatter" (closer 
to uniform) than the arcsine density. 

The next Theorem compares the limiting normalized expected errors for the 
three non-adaptive algorithms discussed in this paper. 

THEOREM 3.2. Let A beta arcsine Auniform --n , A n , and _,~ represent the errors after n 
observations chosen according to the Beta(2~3,2~3), arcsine, and uniform distribu- 
tions, respectively. Then 

1 
v/-nE[A~ eta] -+ 7 r , ~ B ( 2 / 3 , 2 / 3 ) 3 / 2  ~ 0.662281, 

are~i~ - ~ B ( 3 / 4 , 3 / 4 )  ~ 0.675978, V E[ZXn ] --+ 

uniform 1 v/-nE[A~ ] ~ ~ ~ 0.707107. 

The above results are interesting to compare with the convergence rate for the 
deterministic algorithm that places n points equally spaced. Calvin (1994) showed 
that for this algorithm, 

V/-~E[A~] -+ 1 + C /2  ~ 0.5826, (25) 

where 

j=  t- IrA 
C : t3/2 dt ,.~ 0.9207. (26) 

1 

Thus the convergence is significantly faster with deterministic equal spacing. 
An algorithm is called composite if it maintains its features when going from n to 

n + 1 observations (see Zhigljavsky 1991). The random non-adaptive algorithms 
are all composite, while the deterministic non-adaptive algorithm with equally 
spaced points is clearly not. Therefore, while the average performance for a fixed 
value of n is significantly better for the deterministic algorithm, the compositeness 
of the random algorithms will give them a relative advantage if the number of 
observations n is not fixed in advance. 

4. C o n c l u s i o n s  

The random non-adaptive algorithm that is optimal in the average sense for the 
Wiener measure is to take independent observations according to the Beta(2/3,2/3) 
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distribution. This distribution gives a slightly better convergence rate than choosing 
the sites according to the distribution of the maximizer, which is the arcsine dis- 
tribution. An informal explanation is that locally (at location t) the error decreases 
at rate (rig(t)) -1/2, where 9(t)  is the observation density at t. In this sense, there 
are diminishing returns from increasing the observation density. Therefore, while 
more observations are placed where the probability of the maximizer is higher, the 
increase is less than that of the probability of the maximizer. How this heuristic 
reasoning extends to other probabilities is currently under investigation. 

The difference in convergence rate between the different random non-adaptive 
algorithms is small compared with the improvement gained by using a deterministic 
non-adaptive algorithm. An important advantage of the random algorithms is that 
they are composite, unlike a deterministic algorithm. Our results suggest that 
perhaps the advantage of  compositeness may not outweigh the efficiency advantage 
of  deterministic algorithms. This topic will be pursued elsewhere. 
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